Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Journal of Pharmaceutical Practice ; (6): 20-27, 2022.
Article in Chinese | WPRIM | ID: wpr-907149

ABSTRACT

Objective To explore the potential mechanism of Erchen decoction in the treatment of obese polycystic ovary syndrome and obese infertility, in order to provide theoretical basis for “treating different diseases with same method”. Methods The active ingredients and targets of Erchen decoction were obtained from TCMSP database, and the targets of obese polycystic ovary syndromes and obese infertility were obtained from GeneCard database. Active ingredient-target network was constructed by Cytoscape 3.7.1, and protein-protein interaction network and core target were obtained from STRING. GO and KEGG enrichment analysis were performed by Cytoscape 3.7.1 and online software. Results 125 ingredients and 218 targets of Erchen decoction were obtained. There were 2 783 target genes for obese infertility and 2 962 target genes for obese polycystic ovary syndrome. Erchen decoction has a total of 117 target genes in the treatment of obese infertility and obese polycystic ovary syndromes, which proves the principle of “treating different diseases with same method”. Potential active ingredients include quercetin, kaempferol, naringin, baicalin and formononetin. PPI showed that STAT3, JUN, AKT1, MAPK3, MAPK1, MAPK14, IL-6 and FOS were the core targets of “treating different diseases with same method”. Molecular docking results showed that quercetin, kaempferol, etc. had good binding ability with JUN. GO and KEGG enrichment analysis showed that AGE-RAGE signaling pathway, IL-17 signaling pathway and endocrine resistance might be the key pathways for the “treating different diseases with same method” of Erchen decoction. Conclusion Erchen decoction treating "different diseases with same method" involves same targets and same pathways, which can provide reference for future experimental research.

2.
Journal of Pharmaceutical Practice ; (6): 17-22, 2021.
Article in Chinese | WPRIM | ID: wpr-862481

ABSTRACT

Objective To explore the molecular targets and associated potential pathways of Sinomenii caulis in the treatment of rheumatoid arthritis (RA) based on network pharmacology. Methods The constituents of Sinomenii caulis were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The potential active ingredients were screened based on oral bioavailability (OB) and drug like index (DL) in TCMSP database. The potential targets of active ingrediens were explored based on DRAR-CPI docking server. RA related gene targets were retrieved through GeneCards and OMIM database. Venn online software was used to obtain the common target of drugs and diseases. The "herbs-compound-target-disease" network diagram was constructed by using Cytoscape software. String database was used to draw the protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the intersection network were conducted by Bioconductor Database. Results 6 active ingredients and 176 targets were identified. 305 target genes directly related to RA were obtained from the GeneCards and OMIM databases. 15 genes were obtained from the intersection of component-target and disease-target. The GO function analysis found 500 items on biological process (BP), 18 items on cellular component (CC), and 28 items on molecular function (MF). KEGG pathway enrichment analysis revealed 77 pathways. Conclusion This study identified six active ingredients from Sinomenii caulis and revealed the key targets of the anti-RA treatment with Sinomenii caulis being IL10、IL4、INS、MAPK8、ELANE、MAPK1 and MAPK14. The important biological processes and signaling pathways including infection, inflammation and immunity were explored. It has laid the foundation for further molecular biology experiments.

3.
Journal of Pharmaceutical Practice ; (6): 387-390, 2021.
Article in Chinese | WPRIM | ID: wpr-886869

ABSTRACT

Herba Monochasmae savatii, whole plant of the Monochasma savatier Franch. or Monochasma sheareri Franch. ex Maxim., scrophulariaceae, was first found in "Zhiwu Mingshi Tukao". It has the effects of clearing heat and detoxicating, dispelling wind and relieving pain, cooling the blood and stopping bleeding, etc. This review used Monochasma savatier Franch. or Monochasma sheareri Franch. ex Maxim. as the subject term to search CNKI, PubMed and SciFinder, and reviewed the classification of medicinal material, medicinal standards, chemical components, biological activities and pharmacological effects of Herba Monochasmae savatii in recent years to provide a basis for the research, development and clinical rational application.

4.
Journal of Pharmaceutical Practice ; (6): 232-239, 2021.
Article in Chinese | WPRIM | ID: wpr-876855

ABSTRACT

Objective To explore the potential mechanism of Jiangzhihugan capsule (JZHG) for fatty liver (FL), and to provide a theoretical guideline for the clinical application of JZHG. Methods TCMSP and TCMID databases were used to search for the active components and targets of JZHG. GeneCards and OMIM database were used to search the FL related targets. The intersection method was used to identify the common targets of JZHG and FL. Cytoscape software was applied for the construction of active compounds-targets network map. Protein-protein interaction network was constructed by STRING software. Gene ontology functional enrichment analysis and KEGG pathway enrichment analysis were conducted with Bioconductor database and R software. Results 46 potential active components were screened out from JZHG. 7406 targets were retrieved through GeneCard and OMIM database. 118 genes were obtained from the intersection of component-target and disease-target. These genes were mainly involved with the response to oxidative stress, apoptosis, inflammatory response, hormone resistance and other biological processes. The mechanism was related to PI3K-Akt signaling pathway, human cytomegalovirus infection, microRNAs in cancer, etc. Conclusion The mechanism of active ingredients for FL in JZHG may be due to improving lipid metabolism and reducing liver fat accumulation through anti-oxidative stress and anti-inflammatory effects.

5.
Journal of Pharmaceutical Practice ; (6): 193-202, 2021.
Article in Chinese | WPRIM | ID: wpr-876848

ABSTRACT

Objective To explore the potential mechanism of Qingkailing (QKL) on influenza, and to provide a theoretical basis for the clinical application of QKL. Methods TCMSP, TCMID, and PubChem databases were used to search for the active ingredients and action targets of QKL. GeneCards database was used to search for the targets of influenza. The intersection method was used to obtain the targets related to the therapeutic effects of QKL. Cytoscape software was applied for the construction of active compounds-targets network map. Protein-protein interaction network was constructed by STRING database. Gene ontology functional enrichment analysis and KEGG pathway enrichment analysis were conducted by Bioconductor database and R software. Auto Dock Tools were used for molecular docking. Results Total 90 potential active components were identified from QKL with the corresponding 225 targets. PPI network analysis showed that there were 34 key targets intervening influenza by QKL. GO and KEGG showed that the mechanism of QKL intervention on influenza was related to anti-inflammatory and antiviral. The results of molecular docking showed that cholic acid, hyodeoxycholic acid and baicalin had affinity with RELA and JUN. Conclusion The active ingredients of QKL target on JUN, RELA, MAPK1, IL6 and AKT1 to regulate multiple signal pathways, and play an intervention role in influenza.

6.
Journal of Pharmaceutical Practice ; (6): 193-201, 2020.
Article in Chinese | WPRIM | ID: wpr-821469

ABSTRACT

Objective To explore the molecular targets and related potential pathways of Jinzhen oral liquid in the treatment of coronavirus disease 2019 (COVID-19). Methods The potential blood-entry active ingredients and targets of Jinzhen oral liquid were retrieved by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). COVID-19 related gene targets were retrieved through GeneCard. Protein-protein interaction network of common targets was constructed by String. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis of the intersection network were conducted by Bioconductor Database. Results 141 active ingredients were screened according to oral bioavailability and drug similarity. 350 target genes directly related to COVID-19 were obtained from the GeneCard. 47 genes were obtained from the intersection of component-target and disease-target. These genes were mainly involved in response to lipopolysaccharide, oxidative stress and other biological processes. Molecular functions were mainly related to cytokine receptor binding, cytokine activity, receptor ligand activity, etc. The active ingredients were related to IL-17 signaling pathway, TNF and Influenza A signaling pathway, etc. Conclusion The possible active compounds of Jinzhen oral liquid could be anti-viral and anti-inflammatory that could have potential therapeutic effect against virus infection, lung injury and inflammation caused by SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL